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Abstract. The infinite-range quantum Isingapin glass in a transverse and aGaussianrandom 
field hasbeen studied by combiningthepairapproximation with the discretired path-integral 
representation. The phase diagrams are obtained, and the possibilities of the existence of a 
mixed phase in which ferromagnetism and spin-glass order coexist are discussed. This is 
expected to interpret some propenies of the mixed hydrogen-bonded ferroelectric and 
antiferroelectric crystals such as Rb, .,(NHn),H2P04. 

Recently there has been much interest in the quantum version of the Sherrington- 
Kirkpatrick Ising spin glass (SG) in a transverse field [l-151. This model is expected to 
describe some SG properties in non-magnetic cases, such as the mixed hydrogen-bonded 
ferroelectrics and antiferroelectrics of the Rb,-,(NH4)xH,P0, (RADP type-the so- 
called proton glasses [4,13]. Here the proton tunnels between the two energy minima 
in the hydrogen bond, which is mimicked by the transverse field. Some workers have 
obtained the transverse freezing temperature for the symmetric transverse king sc 
(i.e. the model corresponding to x = 1 in RADP). The paramagnetic and sc phases are 
separated by a Line of instability [l, 71, which is analogous to the Gabay-Toulouse line), 
characterized by a freezing of the spin components which are transverse with respect to 
the applied field [ 161. However, since a transverse field applied in the king spin system 
brings about a quantum effect by causing spin flips, the requisite non-commutativity of 
operators in the Hamiltonian creates a potentially difficult technical problem [17]. It 
tums out that the statics and dynamics within the replica theory cannot give a complete 
phase diagram in fully deuterated RADP, which can be conveniently described by a 
quantum transverse king model with quenched random infinite-range interactions and 
intrinsic quenched random fields generated by substitutional impurities. In a previous 
paper [18], we have proposed a new approach, which combines the pair approximation 
for random king system and the discretized path-integral representation (DPIR) for 
quantum spin systems, to study the effect of a transverse field r on the paramagnetic-to- 
SG and ferromagnetic-to-sc phase transitions, in the transverse king SG with asymmetric 
bond distribution. In this paper, we shall extend this new method to study the effects of 
the transverse and random longitudinal fields on the instability phase boundaries and 
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the multicritical point where the four phases (paraelectric, proton glass, mixed phase 
and ferroelectric) meet, in a deuterated RADP crystal with a Gaussian random field 
distribution. It will be predicted that, in the infinite-range quantum transverse Ising 
proton glass, the existence of a mixed phase in which the ferroelectric coexists with 
transverse proton glass order is likely. 

We consider a system consisting of N interacting Ising spins; the Hamiltonian of the 
system is 

% =  -xJiiofo; - r x e - x H ; o :  (1) 
i.i i i 

where U; and of are the Pauli matrices referred to the ith site of the lattice and r is a 
transverse field. Hi is the identically distributed random field at site i with the Gaussian 
probability distribution such that its average is zero and its square derivative 02: 

P ( H , )  = ( Z , Z U ~ ) - " ~  exp( -HT/20Z). 

P(J,)  = (ZZJ~)-'/~ exp[-(Jii - Jo)2/ZJ2] 

(2) 
The exchange coupling Ju is a random Gaussian variable with mean J o  and variance 

J2: 

(3) 
where Ju and J are scaled by 

J ,  = jo/N J = J I V E  (4) 
so that .fo and jar ,  intensive. The parameters U, J and Ju depend on the concentration 
x characterizing the composition of the proton glass as in the case of FUDP [4, 13, 191, 
and the relative magnitudes of J and Jo  determine whether ferroelectric or proton-glass 
ordering occurs at low temperature. 

Let us assume that the effective Hamiltonian for the ith spin isof the form 
xi  = - ro: - h,o;  ( 5 )  

where hi is the local field (including the random field Hi)  at the site i. It was shown that 
in the infinite-range Gaussian king model the quenched average over the J,! distribution 
can be replaced by the static random field [7,18,20], where the distribution is Gaussian 
with mean .iom and variance j2q. In the present case, the local field hi is distributed 
according to 

(6) P ( h , )  = [2n(oz +jzq) ] -1 /2  exp[ -(hi -~om)z/Z(02 + j z q ) ]  
where m is the average magnetization and q is the static Edwards-Anderson order 
parameter. The corresponding one-body partition function becomes 

The local magnetization m(h;) and the local static transverse susceptibility x@) induced 
by the local field h, can be given by 

Zi = Tr [exp( -pXi)] = 2 cosh[P(hf + rZ)'b]. (7) 

tn(hi)  = (l/P)[a In Z,)/ah,] = hi(hi + Tz)-'p tanh[P(hf +T2)@] 

+ [phf/(hZ + rz) sech2[P(h? + r2)''z]. 

x.. 'I = - J.,o?& 'I I I - h f @  -h,? 0; -r(@ +U;) 

(8)  

(9)  

(10) 

X(hi) = (a/ahi)m(hi) = [Tz/(h: + r2)3/2] tanh[P(hi +r2)'p] 

The pair Hamiltonian in the pair approximation is given by 

whereh: is thelocalfieldonsiteicomingfromotherspinsexceptfromsitejandequals 
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the one-body local field hi in the limit of infinite interactions where every spin couples 
equally with every other spin. The corresponding pair partition function becomes 

Zji = Tr [exp( -/%%,)I. (11) 

In order to obtain the pair partition function, we shall reformulate the Hamiltonian 
in DPIR. The idea in DPIR is to convert the quantal two-state spin on each lattice site into 
aP-componentvectorU(UI('), U*), . . . , U'p))andeventuallytoletPgotoinfinity. Each 
component fl) ( I  = 1.2,. . . . p )  is taken to be a classical two-state variable U') = 2 1, 
and the net effect is to represent the quantum uncertainty by creating many copies, or 
replicas, of the original variable. By means of the DPIR, the pair Hamiltonian can be 
broken upintoareferencepart Hho) involvingonlythesingle-sitetemsandan interaction 
part V[18,21],i.e. 

x.. 'I = x!? 1, + v (12) 

-fix:) = U, . a .  U; + Uj . a .  U, + hi . U j  + k, . U, + Pc (13) 

a = 4 ln[coth(pr/p)] C = 4 In[cosh(pr/p) sinh(Pr/p)] (14) 

( 4 . P  = %,-I (4p.I = a (15) 

hi = (Ph?/p)( l ,  1,. . . ,P) (16) 

-pv= (pJi l /P)u,  . Uj. (17) 

where 

with 

The free energy can be expressed in terms of the free energy Fo of the reference part 
and the cumulant expansion in the reference part 

(18) 
= 1  

n. -PF, = ln{Tr[exp(-px,,)]}=-PF~+ 2 ,(-p)"c,(w 
with 

-PF0 = ln{Tr[exp(-PXy)]} 

and the cumulants are given by 

C, (w = (V", C,(V = (V% - (Vi,. . . 
where ( .  . .)o denotes an average over the reference part. We take the first cumulant 
here; the pair partition function may be evaluated by 

In Z, = ln{2 cosh[p(h:* + r2)1/2]} + ln(2 cosh[p(h:' + r2)'i2]} 
+ pJo[{tanh[P(hf2 + rZ)1'*]}/(h:2 + rZ)@] 
x h; [{tanh[p(hf* + r*)l'z]}/(hy + r2)liZnh,?. (21) 

The free energy of the full system in the pair approximation is given by the following 
expression [22]: 

-PF= I P(h;) dhi P(hi) dhi (E In Zi + (In Zl, - In Z j  - In Z j ) )  (22) 

(23) 

i ij 

where the m and q are given self-consistently by the variational equations 
aFlam = aF/aq = 0 



x tanhZU{[join + (U? + j29)'12y)2 + r21'!q. (25) 
It is straightforward to solve equations (22)-(25) numerically for m and 9 and to 

obtain analytic results in the limiting cases. 
We first consider the possibility of the SG freezing transition for Jo = 0 but U # 0. It 

is straightforward to see from equation (25) that the order parameter 9 remains non- 
zero at all temperatures, suggesting that in the presence of a Gaussian random field the 
SG phase transition is smeared out. i.e. the main effect of random fields is the smearing 
of the SG transition, which is qualitatively similar to that of the homogeneous external 
field. 

In order to investigate the instability of the ferromagnetic phase we shall discuss the 
solutionofequations(22)-(25)forJU # Oando = 0. It wasdemonstratedthat,in theking 
and Heisenberg models with random interactions, the ferromagnetic, paramagnetic and 
SG phases are likely. Moreover, it  was shown that a mixed phase, between the SG 
and standard ferromagnetic phases, occurs for an asymmetric bond distribution. In 
particular. when j o  > j and the system is cooled from a high temperature, there is first 
a transition from a paramagnet to a ferromagnet and then, at a lower temperature, a 
second transition to  a new phase which is characterized by the coexistence of ferro- 
magnetic order and SG ordering of the transverse components of the spins. The existence 
of this mixed phase is implicit in the Gabay-Toulouse (CT) line. The instability bound- 
aries between the standard ferromagnetic phase and the mixed phase M are determined 
from the zero point of the coefficient of the second-order term in equation (22) when 
the equation is expanded in terms of 9'/'. We obtain 
{r2/[r2 + (Jom)2]3,Q) tanh(P[r' + (Jom)2]'12} 

+ {p(j0t,)?/[r? + (.fom)2]}sech'@[rZ + (.fOm)?]} = l/j. (26) 
The boundary between the ferromagnetic and M phases is given by the simultaneous 

solution of equations (24) and (26). 
We now turn to locating the phase boundary between the SG phase and the mixed 

phase M. The SG-tom phase transition occurs with the breakdown of the magnetization 
m. So the phase boundary of the SG is determined from the zero point of the coefficient 
of the second-order terms in equation (22) when the equation is expanded in terms of 
in. In the result, the second-order transition line is given by 

dy  (2n) exp( - ky') tanh@[r* + (a2 t P ~ ) Y ~ ] ~ ' ? ]  
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Figure 2. Phase diagrams of the quantum infinite-range SG model with non-zero mean Jo in 
the distribution, for two values 01 transverse field i? ( 0 )  Cif = 0.25; (b)  r f j=  0.75. The 
phases are paramagnetic (P), spin glass (St). ferromagnmtic (F)-and a mixed phase (M) in 
which ferromagnetism coexists with transverse sG order. 

The boundary between the SG and M phases is given by the simultaneous solution of 
equations (25) and (27). It is easy to see that the transverse and random fields make the 
M-phase ordering unstable separately, and even the phase boundaries of the M phase 
can be smeared out, which depends strongly on the values of aj jo or r/je On the other 
hand, it is clear on physical grounds that the boundary between the paramagnetic and 
ferromagnetic phase is obtained by solving equation (27) where q = 0, and the result of 
the non-random Ising model in a transverse and a Gaussian random field can be derived 
from the present formula for J-+ 0 [23]. A multicritical point occurs at .f = fo, which is 
determined by simultaneous solution of equations (26) and (27). Figure 1 shows the 
dependence of the multicritical temperatureson the transverse and random longitudinal 
fields. As is seen from this figure, the multicritical points are lowered on increase in the 
strength ofthe random field and transverse field separately, until it reaches T = 0 for U/ 

j,, = f i / n o r  r/f = 1. Finally, in figure 2 we illustrate the changes in the phase diagrams 
for differing values of the transverse field r when Jo # 0 and U = 0. It should be noted 
that quantum fluctuations have the effect of destroying the ordering phase, until the M- 
phase ordering disappears for r = .fe This result may help to explain the existence of a 
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mixed phase in which the ferroelectricphase coexists with transverse proton-glass order 
in some recent experimental findings [23]. 

In conclusion. we have used a new method, which combines the pair approximation 
with the DPIR, to perform the instability analysis of the infinite-range Isingsc model with 
a transverse and a Gaussian random field. We see that, in the presence of the transverse 
field, long-rangeferromagneticorder canindeedcoexist with scorder,owing to freezing 
of the spin components transverse to the applied field and the ordering regions are 
suppressed by the existence of both quantum fluctuations and randomness. It will be 
interesting to study the instability boundaries of the replica-symmetry solution which is 
analogous to the de Almeida-Thouless line for an Ising system in a longitudinal field by 
use of the present method [Z]. These are projects for further investigation. 
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