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Abstract. The infinite-range quantum Ising spin glass in a transverse and a Gaussian random
field has been studied by combining the pair approximation with the discretized path-integral
representation. The phase diagrams are obtained, and the possibilities of the existence of a
mixed phase in which ferromagnetism and spin-giass order coexist are discussed. This is
expected to interpret some properties of the mixed hydrogen-bonded ferroelectric and
antiferroelectric crystals such as Rb, _,(NH,),H,PO..

Recently there has been much interest in the quantum version of the Sherrington—
Kirkpatrick Ising spin glass (5G) in a transverse field [1-15]. This model] is expected to
describe some SG properties in non-magnetic cases, such as the mixed hydrogen-bonded
ferroelectrics and antiferroelectrics of the Rb,. (NH,),H,PO, (RADP type—the so-
called proton glasses [4, 13]. Here the proton tunnels between the two energy minima
in the hydrogen bond, which is mimicked by the transverse field. Some workers have
obtained the transverse freezing temperature for the symmetric transverse Ising sG
(i.e. the mode! corresponding to x = } in RADP). The paramagnetic and sG phases are
separated by a line of instability {1, 7], which is analogous to the Gabay-Toulouse line),
characterized by a freezing of the spin components which are transverse with respect to
the applied field [16]. However, since a transverse field I applied in the Ising spin system
brings about a quantum effect by causing spin flips, the requisite non-commutativity of
operators in the Hamiltonian creates a potentially difficult techmical problem [17]. Tt
turns out that the statics and dynamics within the replica theory cannot give a complete
phase diagram in fully deuterated rADP, which can be conveniently described by a
quantum transverse Ising model with quenched random infinite-range interactions and
intrinsic quenched random fields generated by substitutional impurities. In a previous
paper [18], we have proposed a new approach, which combines the pair approximation
for random Ising system and the discretized path-integral representation (OPIR) for
quantum spin systems, to study the effect of a transverse fi2ld I on the paramagnetic-to-
sG and ferromagnetic-to-sG phase transitions, in the transverse Ising SG with asymmetric
bond distribution. In this paper, we shall extend this new method to study the effects of
the transverse and random longitudinal fields on the instability phase boundaries and
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the multicritical point where the four phases ( paraelectric, proton glass, mixed phase
and ferroeleciric) meet, in a deuterated RADP crystal with a Gaussian random field
distribution. It will be predicted that, in the infinite-range quantum fransverse Ising
proton glass, the existence of a mixed phase in which the ferroelectric coexists with
transverse proton glass order is likely.

We consider a system consisting of &V interacting Ising spins; the Hamiitonian of the
system is

%= - 2 J0i0; ~ T X of — 2 Hio} (1)
i i i

where o7 and o? are the Pauli matrices referred to the ith site of the lattice and I'is a
transverse field, H; is the identically distributed random field at site { with the Gaussian
probability distribution such that its average is zero and its square derivative o*:

P(H,) = (2106%) 7" exp(~ H?/20?). @

The exchange coupling J;; is a random Gaussian variable with mean J; and variance

J=

P(J;) = (20J?) "2 exp[ - (J; — Jy)?/277] (3)
where J; and J are scaled by

Jo =Jo/N J=J/VN (4)

so that Jy and J are intensive. The parameters ¢, J and J, depend on the concentration
x characterizing the composition of the proton glass as in the case of RaDP [4, 13, 19],
and the relative magnitudes of J and J, determine whether ferroelectric or proton-glass
ordering occurs at low temperature.

Let us assume that the effective Hamiltonian for the ith spin is of the form

#; = —To — ho} 5)

where k; is the local field (including the random field H;)} at the site i. It was shown that
in the infinite-range Gaussian Ising mode! the quenched average over the J,, distribution
can be replaced by the static random field [7, 18, 20], where the distribution is Gaussian
with mean Jym and variance J%q. In the present case, the local field #; is distributed
according to

P(h,) = [2r(0? + J2q)] " exp| — (h; = Jgm)*/2(0* + T*q)] (6)

where m is the average magnetization and ¢ is the static Edwards—Anderson order
parameter. The corresponding one-body partition function becomes

Z; = Tr [exp(—f%,)] = 2 cosh[B(h} + ?)'7], ™)

The local magnetization m(#;} and the local static transverse susceptibility y(v) induced
by the local field &, can be given by

m(h;) = (1/B)[3In Z,)/0h,] = k(] + T2}~ tanh[B(h] +T7)'7] )
x(h:) = (8/0h,)m(h;) = [T?/(h} + T?)%?] tanh[B(h7 + L)1)
+ [BhE/(H? + ') sech?[B(h} + T'2)'2]. ()]
The pair Hamiltonian in the pair approximation is given by
¥y =—Jyoioi —hloi —~h} o} —I(o] +0of) (10)

where i} is the local field on site / coming from other spins except from site j and equals
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the one-body local field &, in the limit of infinite interactions where every spin couples
equally with every other spin. The corresponding pair partition function becomes

Z; = Tr [exp(—B%;)]- (11)

In order to obtain the pair partition function, we shall reformulate the Hamiltonian
in DPIR. The idea in DPIR is to convert the quantal two-state spin on each lattice site into
a P-component vector U(U™M, U®, . . ., U'P) and eventually tolet P go to infinity. Each
component U® (1= 1,2,...,p)is taken to be a classical two-state variable U = = ],
and the net effect is to represent the quantum uncertainty by creating many copies, or
replicas, of the original variable. By means of the pDPIR, the pair Hamiltonian can be
broken upintoareference part H{ involving only the single-site termsand an interaction
part V[18,21},i.e.

¥, =K +V (12)
where
%Y =U,-a- U+ U, a-U+k U+ U +7C (13)
wit
" a = {In[coth(8T/p)} C = } Incosh(BT/p) sinh(BF/p)] (14)
(@) = a8,y (@), = a o (15)
h; = (BR}/p)(1.1,...,p) (16)
-8V = (81,;/P)U, - U,. (17)

The free energy can be expressed in terms of the free energy Fy of the reference part
and the cumulant expansion in the reference part

~BF, = In{Telexp(- )]} = - BFo+ S L(-HICY) ()

with

~BFo = In{Tr[exp(~ $3;")]} (19)
and the cumulants are given by

CI(V) = <V>05 C2(V) = (Vz)[] - <V>%a RO (20)

where {. . ., denotes an average over the reference part. We take the first cumulant
here; the pair partition function may be evaluated by

In Z,; = In{2 cosh[B(h}? + T?}'2]} + In{2 cosh[B(h}? + T2} '7]}
+ Blo[{tanhiB(}? + T2} /(R + T%)7]
X h} [{tanh[B(hj? + T2)21}/(h}? + T7) AR}, (21)

The free energy of the full system in the pair approximation is given by the following
expression [22]:

~BF = J’P(h,-) dh; f P(h;)dh; (E InZ; + > (InZ;=InZ;, = In Z,-)) (22)
i i
where the m and g are given self-consistently by the variational equations

aFfam = 3F/ag=0 (23)
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or, in other words,

m= f dy (27) 12 exp(—-4y?) m(y) = f dy (2) "2 exp(~4y?)
Jom + (0% + J2q) %y
{(Jom + (0% + J2q)'2y]? + T2p2
x tanh[B{{J m + (0® + 2q)V2y)? + I2}17] (24)

a=[ay @) exp(~7) m2() = [ dy (2m) 17 exp(~1y?)

[Jom + (0 + 2q)'%y)?
{[Jom + (6 + J2g)?y)? + T?)
X tanh?[B{[Jom + (07 + J2g)¥2y)? + TP/, (25)

It is straightforward to solve equations (22)-(25) numerically for m and 4 and to
obtain analytic results in the limiting cases. '

We first consider the possibility of the sG freezing transition for Jg = 0 but ¢ # 0. It
is straightforward to see from equation (25) that the order parameter g remains non-
zero at all temperatures, suggesting that in the presence of a Gaussian random field the
SG phase transition is smeared out, i.e. the main effect of random fields is the smearing
of the sG transition, which is qualitatively similar to that of the homogeneous external
field.

In order to investigate the instability of the ferromagnetic phase we shall discuss the
solution of equations (22)-(25)forJy # 0and ¢ = 0. It wasdemonstrated that, in the Ising
and Heisenberg models with random interactions, the ferromagnetic, paramagnpetic and
$G phases are likely. Moreover, it was shown that a mixed phase, between the s¢
and standard ferromagnetic phases, occurs for an asymmetric bond distribution. In
particular, when J;, > J and the system is cooled from a high temperature, there is first
a transition from a paramagnet to a ferromagnet and then, at a lower temperature, a
second transition to a new phase which is characterized by the coexistence of ferro-
magnetic order and sG ordering of the transverse components of the spins. The existence
of this mixed phase is implicit in the Gabay-Toulouse (G6T) line. The instability bound-
aries between the standard ferromagnetic phase and the mixed phase M are determined
from the zero point of the coefficient of the second-order term in equation (22) when
the equation is expanded in terms of ¢'/%. We obtain
{r2/[T? + (Jom)*]¥*} tanh{B[F? + (Jom)*]"?}

+ {B(Jom)?/[T* + (Jym)* ]} sech*{B[F? + (Jom) Tt = 1/7. (26)

The boundary between the ferromagnetic and M phases is given by the simultaneous
solution of equations (24) and (26).

We now turn to locating the phase boundary between the SG phase and the mixed
phase M. The SG-to-M phase transition occurs with the breakdown of the magnetization
m. So the phase boundary of the 5G is determined from the zero point of the coefficient
of the second-order terms in equation (22) when the equation is expanded in terms of
m. In the result, the second-order transition line is given by ‘

. I ) i
jdy (25) "2 exp(—4y%) ([I‘z T 1Py tanh{B[I'? + (0? + F2q)y*]'%}

27)

3(02 + fzqv)y2 _ sech:{ﬁ[rz + (0'2 + qu)y2] 1/2})

I+ (oF + J2q)y — T
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Figure ¥. The multicritical temperature T, as a
function of the transverse field I and Gaussian

ity random field variance o.
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Figure 2. Phase diagrams of the quantum infinite-range sG model with non-zero mean f,, in
the distribution, for two values of transverse feld Tz (a) T/f = 0.25; (6) ['/7 = 0.75. The
phases are paramagnetic (P), spin glass (sG), ferromagnetic (F)—and a mixed phase (M) in
which ferromagnetism coexists with transverse G order.

The boundary between the SG and M phases is given by the simultaneous solution of
equations (25) and (27). It is easy to see that the transverse and random fields make the
M-phase ordering unstable separately, and even the phase boundaries of the M phase
can be smeared out, which depends strongly on the values of o/Jy or I'/J;. On the other
hand, it is <lear on physical grounds that the boundary between the paramagnetic and
ferromagnetic phase is obtained by solving equation (27) where g = 0, and the result of
the non-random Ising model in a transverse and a Gaussian random field can be derived
from the present formula for J — 0 [23]. A muiticritical point occurs at J = J;, which is
determined by simultaneous solution of equations (26) and (27). Figure 1 shows the
dependence of the multicritical temperatures on the transverse and random longitudinal
fields. As is seen from this figure, the multicritical points are lowered on increase in the
strength of the random field and transverse field separately, until it reaches T = 0 for o/
Jy=~?2/mxorT/J = 1. Finally, in figure 2 we illustrate the changes in the phase diagrams
for differing values of the transverse field I when J; # 0 and ¢ = 0. It should be noted
that quantum fluctuations have the effect of destroying the ordering phase, until the M-
phase ordering disappears for I' = J;. This result may help to explain the existence of a
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mixed phase in which the ferroelectric phase coexists with transverse proton-glass order
in some recent experimental findings [24].

In conclusion, we have used a new method, which combines the pair approximation
with the DPIR. to perform the instability analysis of the infinite-range Ising G model with
atransverse and a Gaussian random field. We see that, in the presence of the transverse
field, long-range ferromagnetic order can indeed coexist with sG order, owing to freezing
of the spin components transverse to the applied field and the ordering regions are
suppressed by the existence of both quantum fluctuations and randomness. It will be
interesting to study the instability boundaries of the replica-symmetry solution which is
analogous to the de Almeida-Thouless line for an Ising system in a longitudinal field by
use of the present method [25]. These are projects for further investigation.
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